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A computer program is identified with the strongest predicate describing every
relevant observation that can be made of the behaviour of a computer executing that
program. A programming language is a subset of logical and mathematical notations,
which is so restricted that products described in the language can be automatically
implemented on a computer. The notations enjoy a number of elegant algebraic
properties, which can be used for optimizing program efficiency.

A specification is a predicate describing all permitted observations of a program,
and it may be expressed with greatest clarity by taking advantage of the whole
language of logic and mathematics. A program P meets its specification S iff
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E=P=2_.

The proof of this implication may use all the classical methods of mathematics and
logic.

These points are illustrated by design of a small language that includes assignments,
conditionals, non-determinism, recursion, input, output, and concurrency.
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i. INTRODUCTION

It is the aim of the natural scientist to discover mathematical theories, formally expressed as
predicates describing the relevant observations that can be made of some physical system. A
physical system is fully defined by the strongest predicate that describes it. Such predicates
contain free variables, standing for values determined by observation, for example ‘a’ for
acceleration, ‘v’ for velocity, ‘t’ for time, etc.

The aim of an engineer is complementary to that of the scientist. He starts with a specification,

A

formally expressible as a predicate describing the desired observable behaviour of a system or
product not yet in existence. Then, with a limited set of tools and materials, within a limited

p
s

timescale and budget, he must design and construct a product that meets that specification.
The product is fully defined by the strongest specification that it meets.

For example, an electronic amplifier may be required to amplify its input voltage by a factor
of ten. However, a condition of its correct working is that the input voltage must be held in

SOCIETY

the range 0 to 1 V. Furthermore, a margin of error of up to one volt is allowed on the output.

THE ROYAL

This informal specification may be formalized as a predicate, with free variables:

V;, standing for the it observed input voltage;
V,, standing for the itk observed output voltage.

Then the specification is
Vi.i<j=0<V,<1)
=|V;—10x Vj| < 1.
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476 C. A. R. HOARE

Table 1 (a) and (b) show the first six observations made of two different amplifiers. The first
observation of each amplifier shows it working with perfect accuracy at the midpoint of its range.
The second observation is only just within the margin of tolerance. On the third observation
the amplifier reveals its ‘non-determinism’: it does not always give the same output voltage
for the same input voltage. On the fourth observation something goes wrong. For 4 (a) it is
the amplifier that has gone wrong, because the five volt output is outside the permitted margin
of error. Even if every subsequent observation is satisfactory, this product has not met its
specification, and should be returned to its maker. For 4 (b), it is the observer who is at fault
in supplying an excessive input of 1.3 V. As a result, the amplifier breaks, and its subsequent
behaviour is entirely unconstrained: no matter what it does, it continues to meet its original
specification. So on the sixth observation, it is the observer who returns to his Maker.

TABLE 1. OBSERVATIONS MADE OF TWO DIFFERENT AMPLIFIERS

observation (@) () N
number Vv \Y Vv A

1 0.5 5 0.5 5

2 0.4 5 0.4 5

3 0.5 4 0.5 4

4 0.3 5 1.3 13

5 0.6 6 0.6 6

6 0.7 7 0.7 997

The serious point of this example is to illustrate the usefulness of material implication in a
specification. The consequent of the implication describes the desired relation between the
inputs and the outputs of the system. The antecedent describes the assumptions that must be
satisfied by the inputs of the system for it to continue working. If the assumptions are falsified,
the product may break, and its subsequent (but not its previous) behaviour may be wholly
arbitrary. Even if it seems to work for a while, it is completely worthless, unreliable, and even
dangerous.

A computer programmer is an engineer whose main materials are the notations and
structures of his programming language. A program is a detailed specification of the behaviour
of a computer executing that program. Consequently, a program can be identified abstractly
with a predicate describing all relevant observations that may be made of this behaviour. This
identification assigns a meaning to the program (Floyd 1967), and a semantics to the
programming language in which it is expressed.

These philosophical remarks lead to the main thesis of this paper, namely that programs
are predicates. However, the converse claim would be incorrect, because any predicate that
is wholly unsatisfiable (for example the predicate false) cannot correspond to a program. If
it did, the behaviour of a computer executing that program would be wholly unobservable!
Consequently, every observation of that behaviour would satisfy every specification! A product
that satisfies every need is known as a miracle. Since such a product is also in principle
unobservable, philosophical considerations lead us to suppose that it does not exist. Certainly
any notation in which such a miracle could be expressed would not be an implementable
programming language. There are also obvious practical reasons for ensuring that all predicates
expressible as programs are in some sense computable, and can be computed at a cost that
is controllable by the programmer and acceptable to his client.
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The design of a programming notation requires a preliminary selection of what are the
relevant observable phenomena, and a choice of free variables to denote them. A meaning must
then be given to the primitive components of the language, and to the operators that compose
programs from smaller subprograms. Ideally, these operators should have pleasant algebraic
properties, which permit proof of the identity of two programs whenever they are indisting-
uishable by observation. The achievement of these ideals is far from easy: so the language
introduced in the next section for illustrative purposes has been kept very simple. It includes
non-determinism, output, input, recursion, concurrency, assignment, and conditional.

2. A SIMPLE PROGRAMMING LANGUAGE

The first and simplest predicate that is expressible in our simple programming language is
the predicate ‘true’. This predicate is satisfied by all observations. If this is the strongest
specification of a product, then there is no constraint whatever on the behaviour or
misbehaviour of the product. The only customer who is certain to be satisfied with this product
is one who would be satisfied by anything. Thus the program ‘true’ is the most useless of all
products, just as a tautology is the most useless of scientific theories.

Now the most useless of computer programs is one that immediately goes into an infinite
loop or recursion. Such a program is clearly broken or unstable, and can satisfy only the most
undemanding customer. Thus we identify the infinitely looping program with the predicate
‘true’. This may be a controversial decision; but in practice the ascription of a meaning to
a divergent program is arbitrary, because no programmer will ever deliberately want to write
a program that runs any risk of looping forever.

Non-determinism

The first and simplest operator of our programming language is disjunction. If P and Q are
programs, the program (P Vv Q) behaves either like P or like Q. There is no way of controlling
or predicting the choice between P and Q; the choice is arbitrary or non-deterministic. All
that is known is that each observation of (P V Q) must be an observation of the behaviour of
P or of Q or of both.

The algebraic properties of disjunction are very familiar: it is idempotent, symmetric,
associative, etc. Furthermore, it is distributive (through disjunction) and strict in the sense that

pV true = true V P = true.

This means that if either P or Q may break then so may (PV Q). To an engineer, a product
that may break is as bad as one that does, because you can never rely on it.

Processes

Now we must be more specific about the nature of the objects described by programs in our
simple language. These objects are called processes; a process should be regarded as a ‘black
box’ connected to its environment by two wires. One of the wires is used for input of discrete
messages, and the other for output (figure 1). A process engages in an unbounded sequence of
communications, each of which is either an input from the input wire or an output to the output
wire (but not both). If the environment is not ready for the communication, the process waits
for it to become so, and vice versa. There is no ‘buffer’ in the wire; the act of communication
requires simultaneous synchronized participation of both the sender and the receiver.
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in P out

Ficure 1. A process.

We postulate that the passing of a message on either wire is an observable aspect of the
behaviour of the process. Imagine that there is a tape recorder attached to each of the wires,

%

p &

recording each message as it passes, but not recording the length of the gaps between the
messages. At any moment, we can observe the current content of each of the two tapes. We
introduce the free variable ‘in’ to stand for the current content of the tape recorder on the
input wire, and ‘out’ to stand for the sequence of messages recorded from the output wire.
We also postulate that the internal state of a process cannot be directly observed: the black
box has no openable lid. However, we assume that we can observe, by a green light perhaps,

THE ROYAL
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whether the process is working properly. This will be indicated by the value of a free Boolean
variable ‘stable’, which takes as value either true or false. If ever ‘stable’ goes false, the machine
is broken, and anything may happen (beware!).

Specifications

To formulate specifications, we need some notations to describe sequences of messages:
{ ) is the empty sequence, containing no messages. This is the value of both variables ‘in’
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and ‘out’ if they are observed at the very start of the process;
s| is the length of s.
If s is a sequence other than { ),
s, 1s the first message of s,
s’ is the result of removing the first message of's,
st is the result of removing the last message of s (truncation).
If s and t are sequences,
s"t is the result of concatenating s and t in this order
s<tA Ju.s"u=t,i.e. sis an initial segment of t.
This is clearly a partial order with bottom ¢ }.
Using these notations, we can describe the behaviour of certain simple processes. For

A

p
”/\\ \\
R

example, a process that just copies messages from its input to its output is always stable, and

—

< — every observation of it shows the output sequence either exactly equal to the input sequence

S — or one shorter:
=

- = COPY 4 stable A (out = in V out = in').

=

E o This copying process must always output each message immediately after inputting it. A more
W

general buffering process relaxes this constraint. For example, a double buffer may be specified:
BUFF2 A stable A oute{in,inf,inf}.

An unbounded buffer ensures that the output is always a copy of some initial segment of the
input sequence
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BUFF A stable A out < in.
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Thus we see how predicates with free variables ‘in’, ‘out’ and ‘stable’ (together with
conventional mathematical notations) can effectively describe and specify the behaviour of
processes. But none of these notations can feature in our simple programming language; nor
can they be included in any other programming language, since they can be used to express
unsatisfiable predicates, such as

in < out A out < in Ain # out
or unimplementable predicates like
stable A |in| = 3,

which requires a process to input three messages before it starts! Our programming language
must therefore be restricted to notations defined in the remaining paragraphs of this section.
The restrictions will also ensure that no process can ever stop, so it will be impossible to imple-
ment the specification: stable A |in|+|out| < k.

Output

Let P be a predicate exactly describing the behaviour of a process, and let e be a term
composed of (say) constants, variables, and a fixed selection of primitive recursive functions.
We introduce the notation

le~>P

to describe the process that first outputs the value of e on its output wire, and then behaves
as described by P.

The very first observation of the behaviour of (!e - P) is that it is stable and that the sequences
of input and output messages are both empty. In every subsequent observation, the output
sequence is nonempty, and its first message has value e. Furthermore, on removing the first
message from the output sequence, the resulting observation will be an observation of the
behaviour of P. These remarks explain the definition:

le >P(in, out, stable) & out = in = { ) Astable
Vout # { )<out, = e A P(in, out’, stable).

This operator is distributive but not strict:
le>(PvQ) = (le=>P)V (le=>Q).
As an example, we give

(Ix—>COPY) = ((in = out = { ) Astable)
V (out # { > Aouty =x
Astable A out’ €{in, in'})).

Notice how the output has introduced the free variable x into the formula.
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Input
Let P(x) be a predicate (possibly containing the variable x among its free variables) that

describes exactly the behaviour of a process as a function of the initial value of x. Then we
introduce the notation

?x > P(x)

to describe the process that first inputs a value on its input wire, and then behaves like P(v),
where v is the value it has just input.

The initial observation of the behaviour of (?x—P(x)) is exactly the same as that of a process
that starts with an output. In every subsequent observation, the input sequence is nonempty.
Furthermore, on removing the first message from the input sequence, the resulting observation
will be an observation of P(in,), i.e. the process that results from setting the initial value of
x to in,. These remarks explain the definition:

?x - P(x, in, out, stable) & ((out = in = { ) Astable)
V (in # { > A P(in,, in’, out, stable))).

This operator is distributive, and binds the variable specified:

(?x—(P(x) V Q(x))) = ((>x>P(x)) v (?x~>Q(x)))
(?x->P(x)) = (°’y—>P(y)) when x is not free in P(y)

and vy is not free in P(x).
As an example we give

(?x > (Ix—>COPY)) = ((in = out = { ) Astable)
vin # { > A (in” = out = { ) Astable
V (out # { ) Aout, = in,
A stable A out’ €{in’, in’1})))
= stable A (in =out =¢ )
V]in|=1Aout= )
V out, = in, A out’ €{in’,in’t})

= COPY.

Note how the input has eliminated the free variable x from the formula. Note also that COPY
is the solution for § in the equation

£ = (Px—>(Ix>&)).

Recursion

Let & be a variable standing for an unknown process. Let P(§) be a formula containing &,
but otherwise containing only the notations of our simple programming language: disjunction,
output, input, and the constant ‘true’. Consider now the equation

& =P().

This may be taken as a recursive definition of a process with name § and body P(§). Every
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PROGRAMS ARE PREDICATES 481

time & is encountered in the body, it stands for another copy of the whole body P(&). The
predicate that is the weakest solution to this equation will be denoted

HE . P(E).

But does such a solution exist? D. S. Scott has shown how to answer this question. Consider
the sequence of predicates

true, P(true), P(P(true)), ..., P*(true), ...
and define
pE.PE) A Vn = 0. P*(true).

The fact that this is the weakest solution to the equation given above depends on the fact that
P(&) is a continuous function of , in the sense that it distributes over the universal quantification
of descending chains of predicate, i.e.

P(Vn>0.Q,) =Vn > 0.P(Q,) whenever EQ,,,=Q, for all n.

The continuity of all programs expressed in our simple language is assured by the fact that
each operator of the language is continuous, and the composition of continuous operators is
also continuous. We therefore have good reason to insist that all future operators introduced
into the language must also be continuous.

The simplest example of recursion is the infinite loop

pE . = Vn = 0. true = true.
A more interesting example is the program that copies messages from its input to its output

pE. (Px>!x>E)=V¥n>=0.P,,
where  P; = true
and P = (x> 1x->P).

The first few terms of the series are

P, = (in = out = { ) Astable
Vin # { > A (in’ = out = { ) Astable
Vout # { ) Aout, = inj A true)),

P, = (in = out = { ) Astable
Vin’ = out = { ) Astable
Vin’ = out’ = { ) Ain, = out, A stable
Vin” = out’ = { ) Ain, = out, A stable
Vin” = out” = { ) Ain, = outy A (in’), = (out’),).
In general, P, describes the first 2n communications of a process that correctly copies the first
n messages from the input to the output and then breaks. We therefore guess the general form
P, = (lin|+|out| < 2n =

stable A (out = in V out = in'))
A (lin] +|out| = 2n = out = in).
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Finally, we draw the conclusion (which was obvious all along) that

ME(Px > Ix>&)=Vn>=>0.P,
= stable A (out = in V out = in')

= COPY.

A simpler way to prove this identity is to show that the predicate COPY is a solution to the
defining equation of the recursion, i.e.

COPY = (?x— Ix—> COPY).

The fact that this is the weakest solution is a consequence of the fact that it is the only solution.
A program P(£) is said to be guarded for £ if every possible occurrence of & is preceded by an
input or output operation. Thus

(Ix>&) VvV (Py—> x—>§) is guarded,
but (Ix—>E)VE is not guarded.

If P(§) is guarded for &, then the equation
& =P(g)
has an unique solution p§.P(&).

Chain

If P and Q are processes, we define (P > Q) as the result of connecting the output wire of
P to the input wire of Q (see figure 2). Communications along this connecting wire cannot

in P Q out

Ficure 2. A chain.

be observed from the environment; they occur automatically whenever P is ready to output
and Q is ready to input. All communication on the input wire of (P > Q) is performed by P
and all output to the environment is performed by Q. (P > Q) is itself a process, and may be
chained to other processes:

(P> Q)>R.

A simple example of a chain is formed by two instances of the COPY process connected to
each other to make a double buffer:

(COPY » COPY) = stable A3b.be{in,in'} Aoute{b, b}
= stable A out € {in, inf, infT}
A BUFF2.
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A more spectacular example is a program that implements an unbounded buffer by chaining
a recursive instance of itself:

pE. (?x—>(§ > (Ix—->COPY)))
= stable A out < in
A BUFF.

A chain that does nothing but internal communication is just as broken as one that is engaged
in an infinite recursion:

(ME.10>&) > (uE.Px—>E) = true.

Instead of giving an explicit definition of the chaining operator as a predicate, let us list the
algebraic properties we would like it to have. Clearly it should be continuous and distributive;
it should also be strict, so that it breaks whenever either of its operands is broken; finally, it
should obey the following four laws, which describe the expected behaviour of input and output.
First, when the left operand outputs and the right operand inputs, both these actions take place
simultaneously; the communication cannot be observed, but its effect is to copy the value of
the expression from the outputting to the inputting process. These remarks are formalized in

the law (le>P) > (Px >Q(x)) = P > Q(e). (1)

If either operand of > starts with a communication with the other, but the other starts with

an external communication, then the external communication takes place first, and the other
process must wait:

(le>P) > (If>Q) = f>((le>P) > Q), (2)

(?x=>P(x)) > (?y>Q(y)) = 22> (P(2) > (?y~>Q(y))), (3)

where z is chosen not to occur in Q(y). The last of the four laws states that when both operands
start with an external communication, then either communication may occur first, the choice
being non-determinate:

(?x—>P(x)) > (f>Q) = (?z— (P(z) > ((f>Q)))
vV (f>((?x->P(x)) > Q))). (4)

If P and Q are finite in the sense that they contain no recursions, then the collection of laws
given are complete, in the sense that (P > Q) can be reduced to ‘normal’ form that does not
contain >. Thus for finite processes, the meaning of the chaining operator (if it has one) is
uniquely defined by these laws. The continuity condition for > ensures that chaining is
uniquely defined for processes containing recursion as well. The proof of this depends on the
fact that every process can be expressed as an universal quantification of a descending chain
of finite processes. This fact also permits proof of other desirable properties of chaining, for
example that it is associative.

The discovery of an explicit definition of the chaining operator is not simple. A first attempt
at a definition can be based on the fact that if at any time there exists some sequence b of
messages that could have passed on the internal channel, then the current trace of the external
channels is a possible observation of the chain. So we make a preliminary definition:

P(in, out, stable) >, Q(in, out, stable)
A Jb. P(in, b, stable) A Q(b, out, stable).

But >, is neither strict nor continuous, and so cannot be the right definition of >.
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To ensure continuity, we need to describe the conditions under which the chain may break
asaresult of engaging in an infinite sequence of internal communications, a phenomenon known
as ‘infinite chatter’:

CHATTER 4 Vn > 0.3b.|b| > n A P(in, b, true) A Q(b, out, true).

To ensure strictness, we need to identify those cases when the chain diverges as a result of
divergence of just one of its operands. These cases are characterized by the fact that ‘stable’
is false (in fact this was the main reason why the variable ‘stable’ was introduced into the formal
system).

UNSTAB1 4 3b. P(in, b, false) A Q(b, out, true)
V P(in, b, true) A Q(b, out, false)).

Finally, we need to ensure that once the chain breaks it remains broken forever, i.e. it
degenerates to the bottom process ‘true’. To do this we introduce a modal operator (OR) to
mean ‘there was a time when R was true’:

OR(in, out, stable) &
Ja < in.3b < out.R(a, b, stable).

At last we can formulate the definition of the chaining operator
P>Q24 (P>»,Qv OCHATTER Vv OUNSTABI).

That this definition has all the required algebraic properties is only a conjecture: the proof would
depend on the fact that the operands of > are not arbitrary predicates but are restricted to
the notations of our simple programming language.

Assignment

Let x be a list of distinct variables, and let e be a list of the same number of expressions,
and let P(x) be a program describing the behaviour of a process as a function of the initial
values of x. We then define

(e>-x>P(x)) & P(e),

i.e. the result of simultaneously substituting each variable in the list x by the corresponding
expression in the list e, making sure that free variables of e remain free after the substitution.
We assume for simplicity that all expressions of e are defined for all values of the variables they
contain, so that if y is a list of distinct fresh variables

e>—-x—>P(x)=(Ay.y=eAP(y)) = (Vy.y =e=P(y)).

The predicate e>—x—>P(x) describes the behaviour of a process that first simultaneously
assigns the values of e to the variables of x and then behaves like P(x). The initial assignment is
an internal action, and is therefore wholly unobservable. In more conventional programming
notation this would be written

x:=¢;P(x).
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A simple example of a program that uses assignment is one that implements a double buffer

x—>pE. ((Ix—>?x—>&) V(2y—> x> (y>-x->§)))
= stable A out€&{in, inf, inff}
= BUFF2.

Conditional

Let b be a propositional formula, i.e. a single expression that for all values of its free variables
yields a result that is either true or false. Let P and Q be programs. Define

P<b*»Q2 (bAPVDbAQ).

This is a process that behaves like P if b is initially true and like Q if b is initially false. The
conventional programming notation for a conditional is

if b then P else Q.

The reason for the infix notation is that this permits elegant expression of algebraic properties
such as idempotence, associativity and distributivity, for example

P<b» (Q<«b3+R)=P<«b3+Q)«b*R
=P<b*R.

A complete set of algebraic laws for < b 3 will be given by Hoare (1985).
Mg . (Px—>Py—>
0,x>q,r—>
wy. ((@+ L r—y>q,r>V)
€r2y*(lq>r>8)))

Ficure 3. Long division.

A simple example of the use of a conditional is to construct a program (see figure 3) that
repeatedly inputs a pair of natural numbers and outputs the quotient and remainder of division
of the first by the second. If the divisor is zero, the program breaks. The program uses the simple
but slow method of successive subtraction. To emphasize the familiarity of these ideas, figure 4
gives a translation into the notations of a more conventional programming language.

Sequentiél composition

If P and Q are processes, their sequential composition (P;Q) is a process that behaves like
P until P successfully terminates, and then it behaves like Q. If P never terminates successfully,
neither does (P;Q). The process that does nothing but terminate successfully will be called
“skip’.

Let us give the algebraic laws that we would expect to govern the behaviour of sequential
composition. First it must be continuous and distributive and strict in its first argument. Clearly


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY \

OF

=l )
52
=0
=
-9

oU
m<
o(’)
=%
Lod
o=

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

486 - C. A.R. HOARE
begin
&: input x;input y;
q:=0;r=x;
y:if r >y then begin q: = q+1;
I =r-y;
go to y
end
else begin output q;
output r;
goto ¢
end

end
Ficure 4. Conventional notation,

it should be associative and have ‘skip’ as its unit. Finally (;Q), considered as a unary postfix
operator, should distribute backward through all other operators of our language (except > ):

(le=>P);Q = le—(P;Q),

(?x—>P(x);Q = ?z— (P(z);Q),

(e>-x—>P(x));Q = e>-z—>(P(2);Q), (for z not free in Q)
(P£b+R);Q = (P;Q) b+ (R;Q).

As for >, we have sufficient laws to eliminate sequential composition from every finite
program. The continuity property ensures that the operator is uniquely defined for all
programs, provided that it exists. It is quite difficult to formulate the definition in a satisfactory
fashion; for further discussion see Hehner (1984). Certainly, successful termination must be an
observable event, and the final values of all variables must also be observable.

3. CONCLUSION

This paper has made the claim that a computer program can be identified with the strongest
predicate describing all relevant observations that can be made of a computer executing the
program. The claim is illustrated by the formal definition of the notations of a very simple
programming language. The claim is justified by purely philosophical arguments. A stronger
justification would be its promised practical benefits for the specification and development of
reliable programs.

Before writing a program, the programmer is recommended to formulate a specification S of
what his program is intended to accomplish. S is a description of the observations that are
admissible for his program when it is constructed. The major problem in formulating S is to
ensure the utmost simplicity and clarity, so that there can remain no doubt that it describes
accurately just what is wanted; for if it does not, there is nothing that the mathematician or
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the programmer can do to remedy the consequences, which may be disastrous. For this reason,
there should be no restriction on the range of concepts and notations used to express the
specification: the full set of logical and mathematical notations should be available for use in
the overriding interests of clarity. If suitable concepts are not yet known, new branches of
mathematics must be developed to meet the need.

Once the specification is formulated, the task of the programmer remains to find a predicate
P, expressed in the restricted notations of his programming language, such that P logically
implies the specification S, i.e.

EP=S.

Because of the notational restrictions, and in the pursuit of efficiency, P will in general get much
longer and more complicated than S. But in proving the correctness of P, the programmer may
use all the familiar techniques and methods of classical mathematics. Consequently, he does
not need the cumbersome specialised proof rules that have often been associated with proof-
oriented programming language definitions (Hoare 1969). Finally, if the specification is not
tautologous, the total correctness of the program will be established.

I certainly do not recommend that a large program be proved correct by expanding all the
definitions and translating it explicitly into one gigantic predicate. A far more effective
technique is to perform the proofs as necessary during the design and construction of the
program. This is known as ‘top-down programming’, and is now described in five steps.

(1) Suppose the original specification is S. The programmer needs the insight to see that the
achievement of S will involve completion of (say) two subtasks. He formulates the specification
of these subtasks as predicates T and U.

(2) Using only the notations of his programming language he then constructs a framework
P(§,y), containing the names & and y to stand for the subtask programs that have not yet been
written.

(3) He then slots the specifications T and U in place of these two subprograms, and proves
that this satisfies the original specification S, i.e.

= P(T,U) = S.

Note that P(T,U) is a predicate expressed in a mixture of conventional and programming
notations.

(4) He can now safely delegate to others the subtasks of writing programs Q and R, which
satisfy the specifications T and U, i.e.

EQ=T
and ER=U.

(5) When this is done, he can slot programs Q and R into the original framework P, and
he may be sure that the result will meet the original specification S,

= P(Q,R)=S.

This assurance is gained not by laborious integration testing after delivery of the components,

but by a proof that has been made even before the task of writing the subprograms has started.

Since the subprograms have been constructed by use of similar reliable methods, the risk of

error should be quite small. And the validity of this method of programming by parts depends
32 Vol. 312. A
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only on the fact that all operators of our programming language are monotonic in the sense
that they respect implication ordering.

If S=T
then P(S) = P(T).

Another effective method of programming is to write first an inefficient program P that meets
the specification S. This can be useful as a demonstration or training prototype of the eventual
product. Then the algebraic laws can be used to transform P into a more efficient program
Q, such that

EQ=P.

Clearly Q will meet any specification that P meets. If P is a non-deterministic program, the
transformation may use implications as well as equivalences in the pursuit of greater efficiency.

Thus the approach advocated in this paper includes that of the other contributors to this
collection, in that it gives a mathematical model for the notations of a simple executable
programming language and uses algebraic laws for optimization. It differs from the other
contributions in making three recommendations:

(1) Specifications should not be confined to the notations of an executable programming
language.

(2) Implication, rather than just equivalence, should be used to prove correctness of
programs, and to transform them in the interests of efficiency.

(3) These methods need not be confined to applicative programming languages. They should
be extended to conventional procedural languages, which can be efficiently executed on
computers of the present day.

I am grateful to: A. J. R. G. Milner (1980) for his pioneering work in the mathematical
theory of communicating systems; E. C. R. Hehner (1983) for pointing out that programs are
predicates; D. S. Scott (1981) for the domain theory that underlies a proper theory of recursion;
S. D. Brookes and A. W. Roscoe (1984) and E.-R. Olderog (1984) for construction of the model
on which this exposition is based; E. W. Dijkstra (1976) for his realization of the value of
non-determinacy, and his insistence on total correctness.
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Discussion

F. K. HANNA (Electronics Laboratories, University of Kent at Canterbury, U.K.). Professor Hoare
made a valuable point when he noted that a physical system can be characterized by a predicate
that describes all possible observations that may be made at the ports of the system. In fact,
not only can this be done, but it can very usefully be done.

At Kent University, we have been working for some years on characterizing digital systems
in just this way. One may imagine waveforms in digital systems as being described as partial
functions, from time to (typically) a two-element set (conventionally called T and F). One can
then write down a predicate (on 3-tuples of waveforms) that characterizes (but not overspecifies)
the notion of, for instance, ‘behaving like an AND gate’. An AND gate is then, by definition,
any device, the waveforms at whose ports satisfy this predicate: likewise with other primitive
elements.

Complex digital systems are realized by an interconnected network of primitive elements.
The predicate satisfied by the complex system may be related to the predicates satisfied by its
component parts by the use of combinators. For instance, the behaviour of proposed imple-
mentation of a serial binary adder may be expressed in terms of the behaviour of the primitive
gates from which it is constructed, and the combinator representing the constraints on the
behaviour of these gates imposed by the ‘circuit diagram’. Working within a suitable theory,
one may then seek to prove, as a theorem, that this behaviour does in fact correspond to doing
binary addition.

The ease with which behavioural predicates may be used to characterize, as weakly or as
strongly as desired, the behaviour of systems, irrespective of whether they are implemented in
either software or hardware, is today an especially valuable one.

C. A. R. Hoare. Thank you for your supportive comment. The advantages of predicate-oriented
specifications and proof of digital systems are especially marked. For small components (for
example a single chip) the actions of the components are lock-step synchronized, so there is
no problem in hiding infinite sequences of internal events; consequently parallel composition
can be simply defined as logical conjunction. This approach is currently being pursued by Mike
Gordon at Cambridge.

Unfortunately, there remains the problem of a miracle. A device that simply shortcircuits
power to ground is represented by the predicate

true = false,

and by propositional calculus, this implies every specification. So one must take care that a
device that shortcircuits will degenerate to ‘true’ instead of ‘false’.

Alternatively, one could admit that we are proving only partial correctness (i.e. conditional
upon absence of shortcircuit). Yet another alternative is to accept the obligation to prove a
circuit equivalent to its specification. Some practical experience is needed to judge between these
alternatives.
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